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The numerical simulation of the one-dimensional displacement of oil by water in a vertical 
porous slab is studied. The water saturation is governed by a qLasiIinear drflision-convection 
equation. The diffusion term vanishes for the extreme values of the saturation. The transport 
term may be nonmonotone (for small or zero water injection rates in presence of gravity). 
Various boundary conditions are used: a generaffzed Dirtchler condirion (for the pure 
transport case), and a condition taking into account the so-called “well act” on the 
production boundary (for the case with capillary diffusion). 

The above problem is solved using discontinuous-finite elements together with mixedjinite 
elements, following the ideas of Lesaint, Raviart and Thomas. Godunov’s generalization of 
upstream weighting is also incorporated. 

A computer code of this algorithm works satisfactorily under a wide range of experimental 
conditions, going from the pure diffusion case (J = 0) to the pure transport case (a = 0). 
Results of various runs on idealized data as well as on laboratory data are shown. 

1. INTRODUCTION 

We shall discuss a numerical simulation of one-dimensional immiscible 
displacement in the presence of gravity. This type of displacement is currently 
performed in oil industry laboratories for the determination of the properties of core 
samples obtained during the drilling of wells. Such an experiment is shown in Fig. 1, 
where it clearly appears that gravity becomes the leading phenomenon for a 
sufficiently small water injection rate. The presence of gravity yields a nonmonotone- 
transport term in the saturation equation. The saturation equation contains a 
degenerate nonlinear dl$‘iision term due to capillary forces. 

The relative magnitude of those two terms varies from the predominance of the 
transport term (under field condition, or in high-speed laboratory displacements) to 
the predominance of the capillary dl@usion term (in laboratory imbibition 
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FIG. I. A typical experiment of displacement of oil by water in a one-dimensional core sample. 

experiments). The numerical algorithm should correctly solve the two limiting cases 
of the pure transport (or the Buckley-Leverett approximation, i.e., no capillary 
pressure) and of the pure diffusion (i.e., zero-fractional flow). We present a method 
using the recent results of Bardos-Leroux-Nedelec [ 1 ] for formulating the boundary 
conditions in the pure transport case, the finite-element methods of Raviart-Thomas 
[2] and Lesaint-Raviart [3] for approximating the diffusion and transport terms, and 
the technique of Godunov [4] adapted to finite elements for treating the case of 
nonmonotone first-order term. Moreover, we apply the boundary condition on the 
production end introduced by Chavent [5,6]. This is the first time (to our 
knowledge) that all of the above techniques have been simultaneously employed for 
the simulation of immiscible displacement. The numerical technique is able to 
efficiently simulate displacements under the whole range of physically admissible 
conditions: 

(i) large, slow, or zero water injection rate, 
(ii) possibility of exchanging the injection and production end during the 

experiment, 
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(iii) presence or absence of capillary forces, 
(iv) presence or absence of gravity, and 
(v) various boundary conditions including those which take into account the 

so-called “well effect” at the production boundary. 

We refer to the report of Salzano [7] for more details concerning the implemen- 
tation of the techniques presented here. This has been used by Cohen [ 14, 171 for the 
construction of a code for automatic adjustment of relative-permeability curves. This 
analysis can be extended to the two-dimensional case (cf. the work of Jaffre [ 15, 161). 

2. MATHEMATICAL FORMULATION OF THE IMMISCIBLE DISPLACEMENT PROBLEM 

Denote the space coordinate by x, and the reduced water saturation by u(x, t), such 
that 

0 < u(x, t) < 1. (1) 

Suppose that the mean f&ration velocity q(t) is known. This is the case for 
experiments with imposed water injection rates. In the case of experiments with 
imposed pressure drop AP, the mean filtration velocity q(t) is given by 

‘@) ,.I K d($, t)) =AP+q,ja K 
b PM4 0) dx 

so that q(t) has to be updated as u changes. This requires only minor changes in the 
solution of the equations, and we shall omit this case here. 

The conservation law and the Darcy law for two-phase flow for incompressible 
fluids lead to the following equation for the saturation u (cf., e.g., [8,9]): 

e-2 Kaa(u) +~(b(u)q(t)+c(u)g,)=O. at ax ( ax ) (3) 

The expressions of cz, b, and c in terms of the relevant physical quantities are given in 
the Appendix. We shall discuss their typical shape and their physical effects. 

a(u) is monotone increasing, with a’(0) = a’(1) = 0, and describes the capillary 
d@%sion, 

b(u) is monotone increasing, with b(0) = -1 and b(1) = +l and describes the 
water transport caused by the meanflltration velocity q(t), 

c(u) is nonnegative, with c(0) = c(l) = 0, and describes the water transport 
caused by the gravity. 

We define the function 

f(u) = b(u) q(t) + c(u)q, (4) 
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and the auxiliary variable 

r4ga(u) 
so that Eq. (3) may be rewritten as 

@$+g+-&u)] =o, 

(5) 

(6) 

where f is monotone increasing or not depending upon the absence or presence of 
gravity. The water and oil filtration velocities 4, and & are given by 

(7) 

(8) 

The initial condition associated with (6) is 

u(x, 0) = u,(x), VXEL?. 

To specify the boundary conditions for (6) we have to distinguish two cases. 

(9) 

Case 1. a = 0, i.e., pure transport equation. Suppose we are given Dirichlet data 
U,(S) on the boundary r== {a, b} of a. It is well known (cf. [ 181) that the usual 
Dirichlet boundary condition 

u(a, 4 = u,(a), u(b, t) = u,(b) 

cannot be satisfied for a first-order transport equation. For instance, iffis monotone 
increasing, the “good” condition is 

u(a, t) = u,(a), no condition at x = b. 

Conversely, iff is monotone decreasing, the “good” condition is 

(10) 

u(b, 0 = u,(b), no condition at x = a. (11) 

When f is nonmonotone, the sign of f’(u) on the boundary r of 0 is not a priori 
known. It depends on the value of the solution u, which, of course, is unknown. 
Hence, it is not possible to know a priori the part of the boundary when the boundary 
value can be specified, and the part of the boundary where no condition can be 
imposed. (Those two parts of the boundary do not necessarily coincide for 
nonmonotone f, with the water injection and production parts.) This problem has 
recently been solved by Bardos-Leroux-Nedelec [ 11, who imposed on the whole 
boundary r the condition 

sgW> t> - kW-(u(s, t>) -f(k>lv, > 0, Vk E MS, t), u,(s)), VsEr, (12) 
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where 

v,=+l for s = & 
= cosine of the “normal” to 0 with the x axis. 

-1 for s =a 
(13) = 

To understand the physical meaning of those boundary conditions, one can rewrite 
them as follows: at x = a, condition (12) is equivalent to the condition 

either u(a, t) = u,(a), 

or da, 4 Z u,(a) and f(4a9 0) -f(k) < o 
u(a,f)-k ’ 

Vk E I&,(a); u(a, t)), Vt E (0, T) (12’) 

and similarly at x = b. This means that, on the boundary r of fi (cf. Fig. 2) either I( is 
“continuous” (i.e., the Dirichlet condition is satisfied) or u is “di~contin~o~.~” and for 
every k in the range of discontinuity of U, the Rankine-Hugoniot direction of 
propagation of the discontinuity between u and k is outward from 8. 

Bardos et al. have shown in [l] that system of equations (6) (with r = 0), (9) (12), 
or (12’) is well posed in the sense that it admits a unique weak solution satisfying the 
entropy condition. Moreover, condition (12) or (12’) is physically relevant in the 
following sense: the unique corresponding solution is the limit, as E + 0, of the 
solution U, of the parabolic equation obtained by adding an edu diffusion term and 
by imposing on r the usual Dirichlet condition I( = u, (cf. [l] for the proof). This 
relevancy shall be confirmed numerically in Section 5 for the case of separation by 
gravity of two immiscible fluids in a vertical core sample. 

In Section 3 we shall show that condition (12) or (12’) is very easy to approximate 
numerically. 

Case 2. a $0, i.e., diffusion + transport equation. As in any difussion equation, 

4 k u 

u(a,t) 
u,(a) for every k t Ilu,(a),u(a,t)C 

u(a,t) 

u,(a)- 

I ) 

a 6 

either or 

FIG. 2. Graphical representation of the Bardos-Leroux-Nedelec boundary condition for 
nonmonotone first order equations. 
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one can presumably take Dirichlet, Neumann, or unilateral boundary conditions for 
Eq. (3). The presence, however, of the capillary pressure 

P, -P, = P,(u), (14) 

where P,(u) satisfies 

P;(u) > 0 for uE (0, l), 

P,(u,) = 0 * 

PC / , 0 /’ 1 

, / “p ” 
* ’ 

I-- 
Q”/’ 

I/ 
I 

(which cannot be neglected as it is directly responsible for the presence of the 
diffusion term!) and the continuity requirement of both water and oil pressure P, and 
P, across the boundary prevent any simultaneous flow of oil and water across the 
boundary as long as P, # P,, i.e., as long as u + u,. So in order to be physically 
admissible any solution u(x, t) must satisfy the pressure continuity requirement: 

simultaneous flow of oil and water may occur across the boundary 
if and only if the saturation u = up at that point. PCR 

At every point, denote s E I-= {a, b): 

us, $,, = trace of water saturation and water filtration velocity, 

u,(s) #re(s) = given values of the water saturation and filtration, 
when needed 

vs=-1 for s = a 
(15) 

= cosine of the “normal” to r, 
= fl for s = b 

and partition r into r- and r+ according to the sense of the mean- (oil and water) 
filtration velocity q(t) across l? 

r- = {s E r 1 q(t)v, < 0) = (overall) injection boundary, 

r+ = {S E r 1 q(t)v, > 0) = ( overall) production boundary. 

The boundary conditions shall be: 

(16) 

* Generally, u, = 1, if IA is the wetting phase saturation. 
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On the injection boundary Z- 

us = %?(s) 
91s = 4kdS) 

(PCR satisfied if u,(s) = l), 

(PCR satisfied if 4,J.v) = 0 (oil injection) 
or if #,JS) = 2q (water injection). 

PI 

N 

On the production boundary Z+ 

as above, CD) 

U,<U,> !P,h)v, a 03 
(up - u,)#,, = 0 (always satisfies the PCR). 

(U) 

Remark 1. From now on q(t) > 0 so that Z- = {a} and Z+ = (b}. m 

Remark 2. When up = 1, the unilateral boundary condition (U) means that, on 
the production boundary, the water accumulates until it reaches its maximum 
saturation value. This is the so-called “well effect” described in the petroleum 
engineering literature. I 

Remark 3. Equations (3) and (9), together with one of the above boundary 
conditions meeting the PCR, satisfy a maximum principle. This ensures that 

0 < u(x, t) < 1 (17) 

for an adequate continuation of the functionf(u) for values of u outside of the [0, I] 
interval. It is then possible to show existence and in some cases uniqueness of a 
solution of those equations. We refer to Chavent [5,9, lo] and Gagneux [ 111 for the 
mathematical study of the corresponding variational equalities and inequalities. I 

3. APPROXIMATION OF CASE 1: TRANSPORT EQUATION 

Consider the approximation of Eq. (6) (with r = 0) together with the Dirichlet 
boundary conditions (12), (13), and initial condition (9). Discretize the space domain 
R = (a, b) into Z intervals (xi, xi+ 1), i = I,2 ,..., Z and the time domain IO, T[ into N 
intervals [t”, t”+‘] IZ = 1,2,..., N of length At. Let k be a given nonnegative integer 
(we shall use k = 0 and k = 1 in the numerical examples), and define: 

VII = {u/l E L’W lz.‘hl~xi,x,+l) E yk, i = 1, 2 ,..., Z}, 

%I E v/I, an approximation to the initial function a,,. 

(18) 

(19) 

Let (24: E V,, 12 = l,..., N + 1) be the desired approximation of U(X, t) (cf. Fig. 3). At 
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FIG. 3. The function ui approximating u(., t”) in the space V,,, and the boundary data u,(a) and 
u,(b). 

every point of discontinuity x, of ui, i = l,..., I + 1 (hence, including a and b) define 
the Godunov value &’ (see Godunov [4], Leroux [ 121) by 

ui +n = ui(x* + 0, t”), i = l,..., I, qy, = u,(b), 

Ul -n = u,(a), u;” = Ui(Xi - 0, t”), i = 2,..., I + 1, 

sg(u,!” - u;“)f(r;) Q sg(u,P - u;“).!-(k), 
Vk E Z(u;“, u;“), Vi = 1, 2 ,..., I + 1. 

(20) 

Remark 4. As only f (&) appears in the computations, the possible nonuniqueness 
of & defined by (20) does not cause a problem. This practical determination of the 
<y’s is easy, e.g., by exploration technique iff is continuous and piecewise linear. u 

Remark 5. Let us denote by u”“(x, t), x E IF?, t > t”, the exact solution of Eq.(6) 
(with r = 0) on IR with initial condition 

u^“(x, t”) = u,(a), for x < a, 

=ll;, for a <x < b, 

= u,(b), for x > b. 

Then one can check, using the method of characteristics for the calculation of 
u^“(x, t), that 

if <l is uniquely defined by (20), then u^“(., t” + 0) is continuous at x = xi, 
and, then rl= a”(xi, t” + 0), 

if Eq. (20) admits p solutions (7, Q <a < -.s < c$, then u^“(., t” + 0) is 
(21) 

discontinuous at x = xi and jumps from ryI to &,. 

Hence, the Godunov value &’ simply represents the value of the solution that would 
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occur at xi at time t” + 0 if the equation were exactly solved starting with the initial 
value 24;. 

If f is monotone increasing (resp. decreasing) on I@;“, u:“), then <f coincides 
with the usual upstream value u;” (resp. uf”). m 

We define the sequence {ui E V,,, n = 1,2 ,..., N + 1) by 
1 

uh = UOh (22) 

nt1 

@ 
uh -u; 

At 
v dx + 9 V dX + (f(U: “) -f(G)) V(Xi) 

- tf(“iFl) -ftC+:,)) v(xi+ I> = O7 (23) 

Vv E 5+, Vi = l,..., Z, Vn = I,..., N, 

where the tyi = l,..., Z + 1, n = l,..., N, are computed from ui and the boundary 
values u,(a), u,(b) by (20). 

Remark 6. Boundary conditions (12) and (13) are taken into account very 
simply in scheme (22), (23) by the fact that the Godunov values <i and &+i at 
~,=a and xNtl= b are calculated using the “Dirichlet data” u,(u) and u,(b) as 
“exterior values” (cf. (20)). For the continuous case, if we define Godunov values 
W) and &it), t E [O, Tl similarly to (20), then boundary conditions (12) and (13) 
can be rewritten as 

fW + 09 0) = fK&))~ vt E [O, q, (12”) 

“f-w - 09 t)) = ft~bm vt E [O, q (13”) 

which implies that the solution has to meet continuously with the Godunov value < on 
the boundary when this values is unique. This property is only approximately 
satisfied by the solution ui (generally, u:’ # <; and u;ti # $, i). m 

Remark 7. The proper discretization for the water and oil filtration velocities 4, 
and & defined in (7) and (8) is 

#lh(Xt, t”) = dt”) +f(<i”), i = 1, 2,..., Z+ 1, n= 1,2 ,..., N+ 1, (7’) 

4ZhCXi9 t”> = qCt”> -f(t;b i = 1, 2,..., It 1, n= l,l,..., N+ 1, (8’) 

and one can easily check that scheme (22), (23) together with (7’) and (8’) satisfies 
the mass balance exactly. 1 

An alternative formulation of (23) is obtained by integrating by parts the term 
containing Ljf/lax 

-Xi+1 nt1 
1 

. xi 

GUh A;U~vdx-j-+' 

xi 
f(uZ)gdx +f(rl+1)V(Xi+1)-f(r;l)V(Xi)=O, 

(23’) 
Vv E ,9’, Vi = 1, 2 ,..., I, Vn = 1, 2 ,..., N. 
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We now examine, for a regular space discretization of step size h, the different 
schemes obtained by choosing k = 0 and k = 1 in definition (18) of Vh (all those 
schemes are explicit (as Scheme (22), (23) ) is and hence, require a Courant- 
Friedrichs-Lewy type condition in order to ensure stability). 

k = 0: Finite Differences 

V,, = space of piecewise-constant functions on each interval. 

Define 

Ult l/2 = (constant) value of uh on (xi, xi+ J, 

then scheme (22), (23) reduces to 

u!+ L/2 = UOh,i+ I/23 i=l I, ,***, 

(24) 

(25) 

(26) 
ntl 

4 
ui+ l/2 - uF+ l/2 + fG+ I) -f(G? = o 

At h 
3 i = l,..., I, n = l,..., N (27) 

with &, i = 1, 2 ,..., Z + 1 defined by (20). 
This is the Godunov scheme for finite differences, which has been extensively 

studied by Leroux in his thesis [ 121. Leroux proves, under the Courant-Friedrichs- 
Lewy stability condition, the convergence of the ui, defined by (26) and (27), to the 
unique solution u of (6) with r = 0 and (9), (12), and (13) satisfying the entropy con- 
dition. 

This scheme is known to satisfy a discrete maximum principle: if the initial and 
boundary data uO,,, u,(a), u,(b) belong to [0, 11, then u,, does, too. There is no need 
to numerically define the function f(u) for values of u which do not belong to [0, 11, 
as the computer program never requires such an evaluation. 

Finally, notice that, using Remark 5, the above scheme for monotone functions f 
reduces to the usual upstream weighting finite-difference scheme. 

k = 1: Linear-Discontinuous Finite Elements 

Now 

V, = space of piecewise-linear functions on each interval. (28) 

Equations (23) and (23’) give, using the Simpson formula for the calculation of the 
integrals in (23) bis, with the notation of Fig. 3 

U+fl+l 
@ ’ - utfn + foP> +4f(4+u,2, 

At 
1 +f@lT,) - 2fG+J - 4fW =. C2()) 

h 

@ 
u l:+nl+ l - ul:+“l 

At 
+ -f(%+") - 4fW+,*,2, >-f@zl>+4f(rl+l)+ ?aG) =. (30) 

h 

with cl defined by (20) and ui+ 1,2 = d(u: + u, r). 
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In the linear case (f(u) = u) this scheme reduces to that of Lesaint [3], who has 
proven that it is convergent and of order two if u is regular. If At/h --f 0 scheme (29), 
(30) tends to one of the second-order schemes proposed by Van Leer [ 131. 

In the nonlinear case convergence of uh to the minimum entropy solution has not 
been proven. However, the construction of the scheme suggests that it will be well 
behaved on that point. This is confirmed by the numerical results (cf. Section 5). As 
scheme (29), (30) does not satisfy a maximum principle, there is no guarantee that ul 
will remain between 0 and 1. Generally, it does not. So one has to define the function 
f(u) for values of u smaller than zero and greater than one. The choice of the 
continuation may significantly influence the efficiency of the scheme. For instance, 
for displacements experiments (q > 0) the following continuation works for ,l > 0 
large enough with respect to f (1) - f (0) = Q(t) 

f(u) =f(l) + A(u - I), for u>l, (31) 

f(u) =f(O), for u < 0. (32) 

(The same continuation with 1= 0 does not work, as the portion of the curves above 
u = 1 has a speed equal to zero and, hence, never disappears.) 

4. APPROXIMATION OF CASE 2: DIFFUSION +TRANSPORT EQUATION 

Consider the approximation of the full equation (6) together with (5), initial 
condition (9), and Dirichlet, Neumann, or unilateral boundary conditions. In this 
case u(., t) is continuous for almost every t, so it has a trace on r= {a, b}. We want 
to determine 

(24; E V,, n = 1, 2 ,..., N + 1) = approximation of u on (a, b) x [0, T], 

(u: E R, s E Z, n = 1, 2 ,..., N + 1) = approximation of the trace of u 

onTX [0, T] 

(ri E Q,,, n = 1,2 ,..., N + 1) = approximation of r = -K & a(u) 

on (a, b) x [O, Tl, 

where Q,, is defined by (mixed-finite elements, cf. Raviart-Thomas [2]) 

Qh={~hE~o([a,b]))~,I(Xi,Xi+,)E5”k’1,i=1,2 ,..., ‘I}. 

(33) 

(34) 

(35) 

(36) 

The use of mixed-finite elements (i.e., the use of a supplementary unknown r-i) for the 
discretization of the diffusion term follows naturally from the choice of a discon- 
tinuous approximation ui made for u, which was made according to Lesaint’s ideas 
for a proper discretization of the transport term. 

For the determination of (uz, u:, r-i, n = 1,2,..., N + 1) we use the following: 
Equation inside (a, b) x [0, T]. Equation (6) is approximated, as in Case 1 of the 
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a=x 1 'i ‘i+l “Itl-” 

FIG. 4. The function ri approximating u(., t”) in the space Qh 

pure transport equation, by Eq. (23) or (23’) with an additional term for the approx- 
imation of the diffusion term &/ax. This yields 

! 
Jit I 
xi 

~“~+~~u~u+j.~‘+‘~u-~~~t~~(u;)au,+~(~~+l)u(xi+,) Xi at , ax 
(37) 

- f(t;> u(xi) = O, vu E Tk, Vi = 1, 2 ,..., I, Vn = 1, 2 ,..., N, 

where the <l are given by (20) with the following changes in the definition of u;” and 

Ul 
-n = 

4 (instead of u,(u)), 
utn - 1+1-u: (instead of u,(b)). 

Equation (5) is approximated by 

.b .b 

J 
rts,dx= 

(I J (1 

(38) 

(39) 
Vs, E Q,,, Vn = 1, 2 ,..., N + 1. 

The water filtration velocity $1 at point Xi is approximated by 

(blh(Xi, t”> = q(l”) + f(tl) + ‘I 7 i = 1, 2,..., 1+1, n=l,..., N+l. (40) 

Initial conditions (as for Case 1) 

1 
Ub = U(J*. (22) 

Boundary conditions. We have seen in Section 2 that one can have at point s 
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on the boundary r= {a, b} of I2 a Dirichlet condition (D) or Neumann condition (N) 
or a unilateral condition (U). 

For numerical calculations, the unihterul condition (U) reduces either to a 
Neumann no-water-j7ow condition (before the breakthrough, i.e., as long as the 
resulting boundary saturation u: is smaller than up) or to a Dirichlet maximum water 
saturation condition (after the breakthrough, i.e., as long as the resulting water flow 
#r,, is directed out offi). 

So it is only necessary to define, for any s E r= (a, b}, the discretization of the 
Dirichlet and Neumann conditions 

Vs E r= {a, b}, Vn = 1,2 ,..., N + 1, either: u: = u,(s), (4lDJ 

or: KS, = 4tt”) +fW + 4(s) = he(S). (4lN,) 

Equations (20), (22), (37)-(39) and (41) completely determine the set of unknown 
(33)-(35). 

Suppose that ui, u:, rz are known. 

Step 1. Calculate the Godunov value <;, i = l,..., Z + 1 using Eqs. (20) and (38). 

‘Step 2. Calculate ui+’ using explicit equation (37). 

Step 3. Using Eq. (39) and boundary conditions (41) all written at time n + 1, 
calculate u:’ ’ and r-z + ’ : 

For the Dirichlet boundary condition. u:’ ’ is given directly by (D,,) of (41) 
and then Eq. (39) gives rit ’ through the resolution of linear system (possibly 
diagonal in the I-D case with numerical quadrature formulae). 

For the Neumann boundary condition. Here, the situation is more complicated. 
In Eq. (41N,) both f(<:) and r:(s) depend, in a nonlinear way, on u: (the first one 
through (20) and (38), the second through (39)). We shall check directly on the 
equation obtained for k = 0, 1 that those equations uniquely determine u:+ * and ri+‘. 

We develop Eqs. (37~(39) and (41) for k = 0 and k = 1. 

k = 0 (Finite Dl&Serences) 

Then r,, is continuous and piecewise linear on each interval ]xi, xi+ r [, i = I,..., I. 
Hence, the free variables for r,, are ri = rh(xi), i = 1,2,..., I + 1. Equation (37) gives 

@ UC,2 - 4t l/2 + rytl - rl 
At h 

+ f GYt 1) - fG3 = 
h 

o 7 
(42) 

i = l,..., I, n=l,..., N, 
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and Eq. (39) becomes, in matrix form, 

where the matrix A4 is given by 

M= 

[ 

I 
f 5 
1 2 
a 3 

0 

if the integrals in (39) are calculated exactly. 

0 

f % 

2 4 1 
0 

1 

t I 

(43) 

(44) 

(45) 

if the integrals in (39) are calculated using the trapezoidal rule. In the latter case, 
Eqs. (42) and (43) give the usual three-poinf approximation of the Laplacian. 

Suppose now that A4 is given by (45) and examine boundary condition (41): 

Dirichlet condition D, 

u: = u,(s), SET= (a,b) (46) 

and, hence, the right-hand side of (43) is known completely. 
Neumann condition N,. From definition (20) of <; note thatJ(?$) is a function 

of the left- and right-hand values u;” and u,?” of u at xi 

f(&) = e(u;n,u:n). (47) 

It is easy to check from (20) that (cf. Fig. 5) 

6 is an increasing function of its first argument and 

a decreasing function of its second argument. (48) 
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FIG. 5. The function B(u; , .) for two values of u; and function f showing only one maximum. 

Condition (41N,) can be rewritten, using (47), (38), and the first and last equation in 
(43) as 

for s = a, (49) 

for s = b. (50) 

As a is strictly monotone increasing, Eqs. (49) and (50) uniquely determine u: and 
U; once U: is known. This is the case during Step 3 of the above step-by-step solution. 

The determination of u,” requires one inversion of the nonlinear function 
8(., u:“) + (2/h) a(B). As the functions a and f are generally given point by point, 
and linearly interpolated between thoses points, the inversion is done by exploration 
techniques. 

k = 1 (Linear-Discontinuous Finite Elements) 

r,, is continuous and piecewise quadratic. The corresponding free variables are 
ri=rh(xi), i= 1,2 ,..., I+ 1 and ri+,,2=rh((xi+~i+1)/2), i= 1,2 ,..., I. (As the 
integrals in (37) and (39) involving the functionsf and a usually cannot be calculated 
exactly with ease, one has to use quadrature formulae). The following choices have 
been tested by Cohen [14]: 

(i) Trapezoidal rule in (37) and in the right-hand side of (39), Simpson rule 
in (39). 

(ii) Trapezoidal rule in (37), Simpson rule in (39). 
(iii) Simpson rule in both (37) and (39). 

As choice (iii) has been shown to give the sharpest front, we shall develop (37) and 
(39) for k = 1 only with choice (iii) for the quadrature formulae. Equation (37) 
becomes: 

Eq. (29) with (-3rl+ 4r;+,,, - rl+ ,)/h added to the left-hand side, and 

Eq. (30) with (rr - 4rl+ ,,2 + 3rl+ ,)/h added to the left hand side, 
(51) 
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and Eq. (39) becomes (with the notation a,?” = a(u’“), etc.) 

r: = (l/h)[6a(ua) - 3aT” - 4ay,, + a;“], 

ry = (1/2h)[-a,??, + 4al-,,, + 3a;” - 301’” - 4al+ ,,2 + a;+“l], i = 2,..., I, 

ri+l/z = tl/h)b:” -a;+“,], i = 1, 2 ,..., 1, 

r :+ 1 = (l/h)[-ai+” -t 4a:+ ,,z + 3a;,“, - 6a(ui)]. (52) 

We now examine the boundary conditions. 

The Dirichlet condition (D,,) becomes (46) (as for k = 0) which determines the 
values of a(@ and/or a($) in the right-hand side of (52). 

The Neumann condition (NJ becomes, with notation (47) 

fqu:: 9 u :“) f (6/h) a(uz) = ),,(a) -q(P) + (l/h)[3a:” + 4a;,, - a;“], (53) 

W;+“l y G> - (6/h) at43 = h,(b) - &“I + W)b:” - 44, l/z - W+“, 1 (54) 

which uniquely determines u: and ui when uf is known. 

5. THE NUMERICAL RESULTS 

1. The Data 

Our numerical tests have been performed using three sets of data: one set of 
idealized data (allowing comparison with exact solutions in the pure transport case), 
and two sets of laboratory data’ (including transport and imbibition experiments with 
and without gravity). Hereinafter u denotes the injected fluid saturation. 

The Set of Idealized Data (ID) 

The data common to the various runs are 

a = 0, b= 1, K=@=l, u,,,=o, u,,,= 1, 

f(u) = u( 1 - u) (strongly nonmonotone!) (55) 

uo(x) = (b -xl/@ - a), Vx E [a, b] 

and the characteristics that vary from one run to the other are: 

(i) the diffusion function a(u), which is either identically zero (for pure 
transport runs) or is taken linear: a(u) = 0.1 X u (for runs with diffusion), 

(ii) the boundary conditions which shall be specified in each run, and 
(iii) the type of approximation (k = 0) or (k = 1) and the space and time step. 

’ Data considerately supplied by the Socktk Nationale Elf Aquitaine. 
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Remark 8. This set of idealized data models the action of gravity, (with g = l!) 
in a vertical core sample (cos y = +I) on two immiscible fluids maintained under 
hydrostatic pressure equilibrium (i.e., q(f) E 0) and having the following idealized 
characteristics (one can think of fluid 1 (resp. fluid 2) as being water (resp. oil). 

p’I =iu, = 1, P, -I%= 1, 

k,,(u) = u, k&) = 1 - u (straight-line relative permeabilities), 

4% z(U)=eitherO or ’ 
u(1 -U)’ 

The First Set of Laboratory Data (LDl) 

In order to have a strong inlluence of gravity, we have first chosen gas as fluid 1 
(injected fluid) and oil as fluid 2 (resident fluid). The pressure drop across the sample 
is supposed small enough so that gas can be taken as incompressible. The data 
common to all runs are (U = gas saturation) 

a=Ocm, b=38cm, 0 = 20 cm*, 

K=83md, ( = 0.1, Umin = 0, U,,, = 0.65, 

g = 980 cm/s/s, 

p, = 0.0128 x lo-* poises, ,uz = 0.208 x lo-’ poises, 

p1 = 0.0183 g/cm3, pz = 0.6225 g/cm3, 

k,,(u), k,,(u) and p,(u) are the continuous piecewise linear functions of u 
shown in Fig. 6. (The gas/oil mobility ratio is 3.64.) 

(58) 

We see from Fig. 6 that the capillary pressure vanishes for the gas saturation 
up = Ufnin 9 so that the unilateral condition reduces to the simple Dirichlet condition 
U=U ,,,,“. The characteristics that may change from one run to another are: 

(ii) the shape of the transport function f(u), which depends (cf. (4)) on the 
mean (gas + oil) filtration velocity q and on the cosine of the angle y of the x axis 
with the vertical direction oriented downward as shown in Fig. 7, 

(ii) the difSusion function a(u) which is either that of Fig. 6 or taken equal to 
zero, 

(iii) the boundary conditions, which are choosen according to Section 2, and 
shall be specified for each run, and 

(iv) the initial condition which can be either 

u,(x)= 0 or u,,(x) = 0.65 * (b - x)/(b - a). (59) 
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k 
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lY!xk gas 
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u 
0 .65 

PI-P2 = p, (bayres) 
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d 
U 

0 .65 

.65 

FIG. 6. The relative permeability and capillary pressure curves for the first set of laboratory data 
(gas and oil) and the corresponding function a(u), b(u), and c(u) used in the numerical calculations. 

The Second Set of Laboratory Data (LD2) 

To simulate imbibition experiments and to illustrate the effects of the unilateral 
boundary condition in the case where it does not reduce to a Dirichlet condition we 
use a second set of laboratory data corresponding to the displacement of oil (fluid 2) 
by water (fluid 1). 

The data common to all runs are (u = water saturation) 

a=Ocm, u = 45 cm2, 

K = 23.1 md, 4 = 0.328, 

g = 980 cm/s/s, 

Umin = 0.24, U”,, = 0.76, 
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b 

I b 

a 

cosy = -1 

SEGREGATION BY GRAVITY: q(t) ~ o 

PERMANENT CONTERFLOWS : 

f 

h 0 

DISPLACEMENT : q(t) = .615 10%/S 

(i.e. a gas injection rate of 8.85cm3/h 

FIG. 7. The shape of the function-/@) and the chosen continuations out of the (0,0.65) interval for 
different values of q and cos y (first set of laboratory data: gas and oil). 

,ul = 0.46 x IO-* poises, p2 = 1.92 x lo-* poises, 

p, = 1.2 g/cm3, p2 = 0.5 g/cm3, 

M49 ~2r(u)9 and I%( u as shown on Fig. 8 (the water/oil mobility ratio is 0.58). 1 
(60) 

The corresponding functions o(u), b(u), and c(u) are similar to those of Fig. 6 (but 
with c > 0, instead of c < 0) and are not shown here. The capillary pressure vanishes 
for u = U,,,, so that the unilateral boundary condition shall cause an accumulation 
of water against the production end. The characteristics that shall vary from one run 
to the other are: 

(i) the magnitude of the capillary pressure (cf. Fig. S), 
(ii) the length of the sample: b = 15.5 cm for imbibition experiments and 

b = 3 1 cm for displacement experiments, 
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FIG. 8. The relative permeability and capillary pressure curves for the second set of laboratory data 
(water and oil). 

(iii) the shape of f(u), which depends on q and cos y. The two following 
combinations are used: 

q = 0, cos y = 0, and cos y = 1 

q(t) = 0.71 x 10e5 cm/s, cos y = 0 

(iv) the boundary conditions, and 

(imbibition experiment), 

(displacement experiment), 

(v) the initial condition, given by (59). 

The characteristics of each run are indicated hereon in by this scheme where the 
water 

I 

I D ,I1 

D 

a>0 

I 
I q>o 

I 

+,,b) q 0 

arrow indicates the choosen orientation of the x axis; “water” (resp. “oil” or “gas”) 
indicates that the corresponding Dirichlet condition (in the sense of (12), if a = 0) is 
used; “@,,(b) = 0” (resp. “d,,(b) = 2q”) indicates that a no-water or no-gas flow 
(resp. a no-oil flow) condition is used; “unilateral” indicates that a unilateral 
condition (U) is used, and --- indicates the initial condition; “ID” (resp. LDl or 
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LD2) indicates that idealized (resp. laboratory) data are used; a > 0 (resp. a = 0) 
indicates that capillary pressure is taken into account (resp. neglected); and q > 0 
(resp. q = 0) indicates that a displacement (resp. imbibition or segregation) 
experiment is being simulated. 

oil 
, 

IO /" 

IJ 

q=o 

#' a=0 
8' 

water 

2. Comparison Between the Finite-D@erence Scheme (k = 0) and the Finite-Element 
Scheme (k = 1) on the Pure Transport Case for Idealized Data 

The analytical solution of the problem is shown at various times in Fig. 9. Due to 
the effects of gravity, the water which is in the top of the sample tends to descend, 
thus filling up the bottom. At time t > 1.5 one arrives at a stationary solution so that 
the top half of the sample is full of oil and the bottom half is full of water. There are 
no water flows through the lower and upper faces, as $1 = f(u) = ~(1 - u) = 0 for 
u=O and u= 1. 

The result obtained using a finite-element scheme, where one has h = 0.1 and 
At = 0.05, are most satisfactory. The computed solution at time t = 0.75 is shown in 
Fig. 10. Note that the discontinuities are well represented. The CPU time on a 
PDPI l/40 is 1.4 s for each time step. 

A finite-difference scheme has been applied to the same example, with the same 
number of numerical unknowns with h = 0.05 and At = 0.05. The solution obtained at 
time t = 0.75 is shown in Fig. 11. The discontinuities are more smeared than with the 

FIG. 9. Analytical solution. 
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I 

FIG. 10. Calculated solution by scheme with k = 1. 

finite-element scheme. The CPU time for one time step is 1.09 s. To obtain as sharp a 
front as the finite-element method, it is necessary in the finite-difference scheme to 
take h = 0.02 and At = 0.02. The CPU time increases to 3.8 s for one time step 
(about three times the CPU time for one time step of the scheme with k = 1). Only a 
finite-element scheme shall be used hereafter. 

FIG. 11. Calculated solution by scheme with k = 0. 
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3. Experiment 1: Segregation by Gravity 

In this experiment, we study the effect of gravity on two immiscible fluids of 
different densities contained in a vertical core sample insulated at both ends. The 
total flow 2q(t) of the two fluids is, necessarily, equal to zero, so thatf(u) = c(u)q, is 
strongly nonmonotone (cf. (55) for ID case and Fig. 7 for the LDl case). One 
analyzes this case with and without capillary pressure, and compares the obtained 
results both on idealized and laboratory data. 

Case 1. Absence of capillary pressure (a = 0). 

oil 

q=o 

a=0 

oil 

As in Section 2, a = 0 requires generalized Dirichlet condition (12), and so we 
cannot directly impose a no-water or no-gas jlow condition at the two extremities of 
the sample. So we have supposed that the sample was in contact at the top with the 
lighter fluid and at the bottom with the heavier fluid. This choice is justified by 

Remark 9. As f is equal to ~(1 - U) for the ID case or has the shape indicated at 
bottom left of Fig. 7 for the LDI case, one can check that the computed Godunov 
values (7 and <:+ i at x=a andx=b are 

G = u,(a) = Umin aslong as ~4:~ < U,,,, 

G’+ I= U,(b) = Urnin as long as UF+“i > V,i,, 

so that the computed water flow satisfies (as practically, uzt, < U,,, and 
uZl + Umin> 

Ma> = 4(t) + f(E) = 0, V4 

#i’+, (4 = q(t) + fG’+ A = 0, Vn. 

This means that when f has the above-mentioned shape and when the Dirichlet 
condition (in the sense of (12)!) u = Umin at x = a and u = U,,,,, at x = b are used, 
the numerical solution behaves so as to exactly satisfy a no-water and no-oil jlow 
condition through the two extremities of the core sample. 1 

We now turn to the numerical results 

Idealized data. This example was presented in Section 5.2. The calculated 
solution at time t = 0.6 s (-) as well as an asymptotic one are presented in Fig. 12 
(a.., t= co; .--, exact). 
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FIG. 12. Experiment I, idealized data: water saturations (a I 0). 

Laboratory data 1. The solution behaves in a similar way: the gas tends to 
accumulate at the top. Figure 13 shows the solution at times t = 3200 s (-), 6400s 
(a--), and 11,200 s (---). 

Remark 10. As mentioned at the end of Section 3, the scheme (with k = 1) is 
nonmonotone, so that the computed saturation may not be bounded within [U,,,, 
U,,,,X] (e.g., example near x = 0 and x = 1 in Fig. 12). 1 

Case 2. Presence of capillary pressure (a # 0). 

We can now use the no-flow boundary conditions. 

FIG. 13. Experiment 1, first set of laboratory data: gas saturations (a = 0). 
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FIG. 14. Experiment 1, idealized data: water saturations (a # 0). 

Idealized data. The solution will not be discontinuous due to the effects of the 
capillary pressure, but is similar to Case 1. The water concentration at x = a tends to 
zero, and at x = b tends to one. The stationary solution is computed at t = 6 s. 
Figure 14 represents the solution at time t = 0.6 s (---) and its stationary 
configuration. A comparison between Figs. 12 and 14 is useful in analyzing the 
effects of diffusion. 

Laboratory data 1. The observation made for the idealized data can be 
repeated in a similar way. The top portion fills up with gas, the oil accumulates at the 
bottom. The gas saturation at top (x = b) comes very close to, but does not quite 
reach, maximum saturation. The calculated solution at time t = 3,200 s (-) 11,200 s 
(---), and 20,800 s (.-e) is shown in Fig. 15. 

Remark 11. If we denote by u,(t) the steady-state solution, given by 

M4AxN - M4&>> = h -A g(x - a> ~0s Y (61) 

the shape of the saturation contour for large t tends to the shape of the capillary 
pressure curve (compare the contour t = 20,800 s and Fig. 6). 1 

” 

h5 -‘, 

I0 I / / .; 
l .-.-,.-.-. .’ 

0. 38. ‘fi 

FIG. 15. Experiment 1, first set of laboratory data: gas saturations (a # 0). 
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4. Experiment 2: Imbibition With and Without Gravity 

In this experiment, we analyze the imbibition phenomenon, using the second set of 
laboratory data (water and oil) with and without gravity. Consider a core sample 
with one end in contact with water and the other end insulated. 

Case 1. Horizontal sample. 

LD2 

water 

I 
‘$e(b)=” 

---- 
a > 0,q = 0 

In this case, f(u) s 0, a pure diffusion equation: Due to the effects of capillary 
pressure, the water enters the sample, and slowly advances toward x = b. The 
saturation contours after 120, 200, 280, 360, and 438 h are represented in Fig. 16. 
Figure 17 shows ((PI(a)) the water flow or oil production rate through x = a (mm’/h) 
at various times. 

Case 2. Vertical sample. 

water 

: 

0 
a>0 

LO2 ( 

: 
q=o 

‘+eb)=O 

Now f is given at bottom left in Fig. 7. This case is interesting because of the 
importance of the effect of gravity. Once the water has penetrated the sample through 
the effect of capillary action, it comulates at the bottom of the sample through the 
effect of gravity (Fig. 18). Figure 20 shows the water saturation contours after 280 h 
with horizontal and vertical samples. Figure 19 shows (p,(a)) the water flow or oil 
production rate passing x = a (mm’/h) (cf. Fig. 17). 

FIG. 16. Experiment 2, imbibition without gravity: water saturation contours. 
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0 

t 
* 

438 hours 

FIG. 17. Experiment 2, imbibition without gravity: oil production rate. 

FIG. lg. Experiment 2, imbibition with gravity: water saturation contours. 

0 

. t 

438 hours 

FIG. 19. Experiment 2, imbibition with gravity: oil production rate. 

.24 ’ +) 
15.5 cm 

333 

FIG. 20. Experiment 2, comparison between imbibition with and without gravity. 
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5. Experiment 3: Permanent Counter-flows 

This experiment is concerned with counterflows in a sample with the top in contact 
with the heavier fluid and the bottom with the lighter one. We shall investigate two 
cases with and without capillary pressure, using both the idealized data and the first 
set of laboratory data (gas and oil). 

Case 1. No capillary pressure. 

oil 

a=D 

q-o LDI 

gas 

Runs on idealized data u(u) = ~(1 - u)). The analytical solution of this problem 
is known, as shown in Fig. 21 (- - -, t = 0; . - ., t = co). The water at the top of the 
sample tends to descend. This creates counterflows so that there is displacement of 
the oil which tends to rise. The solution tends to a steady state where water and oil 
are simultaneously present and flowing in opposite directions. In Fig. 22, the obtained 
solution at times t = 0.4 (-) and t = 2 s (- - -) is compared with that shown in Fig. 2 1. 

Runs on laboratory data 1. The solution is similar to the runs on idealized data. 
In Fig. 23, we show the computed solution at times t = 3200 s (-) and 11,200 s 
(---). 

” 
1, ‘\ \ \ \ \ \ \ \ \ \ 

FIG. 21. Experiment 3, idealized data: analytical solution ((x = 0). 
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FIG. 22. Experiment 3, idealized data (a = 0): water saturation. 

Case 2. Presence of capillary pressure. 

Figure 24 shows the saturation contours at times t = 0.4 s (-) and 2 s (---). These 
curves are very close to the steady state solution (cf. Remark 11). There are 
permanent counterflows of oil and water through the upper and lower end of the 

” 

,65 

FIG. 23. Experiment 3, laboratory data 1, (a = 0): gas saturation. 
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FIG. 24. Experiment 3, idealized data: counter flows (a = 0). 

sample: on the upper end, u = 1 implies pc = 0, and the (PCR) is satisfied; on the 
lower end, ZJ = 0 implies pc < 0 so that the (PCR) is not satisfied. 

Runs on laboratory data 1. Figure 25 shows the computed solution at times 
t = 3200 s (-) and 11,200 s (---). Compare with Fig. 23 in order to analyze the 
effects of diffusion especially at the extremities. In this case, as gas is the nonwetting 
fluid, the (PCR) is satisfied at the upper end x = b but not at the lower end x = a. 

FIG. 25. Experiment 3, laboratory data: counter flows (a > 0). 
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0 38cm 

FIG. 26. Experiment 4, gas injection through the top: gas saturations. 

6. Experiment 4: Displacements of Oil by Gas or Water (laboratory data) 

This is the most interesting experiment from the point of view of the simulation 
and practical utilization of the results. The oil trapped in the sample is recovered 
through injection of gas or water through the x = a extremity. We shall first simulate 
gas injection in a vertical or horizontal sample to illustrate the ability of the 
algorithm to take care of gravity and to track sharp fronts, and secondly, simulate 
water injection in a horizontal sample in order to illustrate the effect of the unilateral 
condition. 

For all runs, we have a > 0, q > 0, a given gas or water injection rate condition at 
x = a and the unilateral condition at x = b. 

: 
D 

a>0 
LO1 : 

q>o 

unilateral 

Gas injection through the top u(u) given at top right of Fig. 7). The injected gas 
penetrates the sample and the gravity tends to retain it toward the top, yielding sharp 
fronts. The gas breakthrough is obtained after 12,432 s (“3 h 27 min). Figure 26 
shows the solutions calculated at times t = 3200 s, t = 6400 s, and t = 22,400 s. 

The accumulation of the wetting phase (here oil) against the production end x = b 
caused by the unilateral condition (“well effect”) appears in Fig. 26 clearly. As we 
mentioned earlier, the unilateral condition for gas injection reduces to the Dirichlet 
condition u = up = U,,,i, = 0. The gas flow through x = b appears in Fig. 30. 

t 

” 

.65 

FIG. 27. Experiment 4, gas injection without gravity: gas saturations. 

581/45/3-3 
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FIG. 28. Experiment 4, gas injection through the bottom: gas saturations. 

Gus injection without gravity U(U) given at middle right of Fig. 7). In this case the 
gas break through occurs after 8460 s (-2 h 21 mm), i.e., approximately 1 hour 
earlier than when gas is injected through the top. The gas saturation at the injection 
end does not attain its maximum value. The gas saturation contours are shown on 
Fig. 27, and the gas flow through x = b on Fig. 30. 

a>o,q>o 

@l,(a)=2q II unilateral 
------ 

LDl 

Gas injection through the bottom u(u) given at bottom right of Fig. 7). Now (cf. 
Fig. 28) the transport and gravity forces act in the same direction and the gas arrives 
very quickly at the production end (the breakthrough already occurs after 5088 s, i.e., 
1 h 14 min) and does not displace all of the oil contained in the sample (the 
maximum gas saturation attained during the experiment corresponds exactly to the 
saturation value which maximizes f(u)). The gas flow through x = b is shown in 
Fig. 30. 

unilateral 

pl,(a)=2q 

We now turn to the experiments where water displaces oil, using the second set of 
laboratory data. 

Water injection without gravity: The effect of the unilateral condition. We have 
shown in Fig. 31 a few saturation contours around the breakthrough time. For every 

a>o,q>o 

qle(a)=2q 
1 

unilateral 
-__---_ 

LD2 
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FIG. 29. Experiment 4, influence of gravity on the gas saturation countours after 6400 s. 

time t” = n At, we have drawn in Fig. 31 both the function U: defined in (33) and the 
two numbers (u,“, u:) defined in (34) and representing the approximation of the trace 
of u(., t) at x = a and x = b. 

The effect of the unilateral condition appears in Fig. 31 clearly: as the water 
arrives at the production end x = b, it first accumulates there until the boundary 
saturation U; reaches the maximum saturation U,,,,, (for which the capillary pressure 
vanishes). The breakthrough time is then defined as the first time this occurs (here, 
4144 min). After the breakthrough time, the boundary saturation ui stays at its 
maximum value and water starts to be produced simultaneously with oil. 

This appears contradictory at first, as the oil filtration velocity through x = b is 
given, after the breakthrough time, by (cf. (4), (S), (8), where q, = 0 and 
Wmd = l>, 

(60) 

where a’(%,,,) = PDF,,,) M~,,J/(k@,,,) + W,,,MhhW (%A generally 
vanishes together with k&,,,), so that p,,(b, t) should seemingly be equal to zero. 
This is not true, as we know from the experiments, and can be explained by the fact 
that the saturation derivative (&@x)(b, t) is infinite, which corresponds to the 
appearance of a boundary layer on the production end of the sample. The possible 
indetermination in (60) does not matter in our code, thanks to the choice we have 
made to approximate u and r = -K@/~Yx)a(u) separately (and not u and &/c?x!). 

9.6 cm3/h 
t / 

horizontal sample horizontal sample 

bottom injection bottom injection 

0 5088 5088 8460 8460 12,432 12,432 seconds seconds 

FIG. 30. Experiment 4, influence of the gravity on the gas production curves through x = b. 
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A 
76 - t=4380 min 

"Z' 

.24 1 
x 

30.5 c? 

FIG. 3 1. Saturation contours around the breakthrough time when the unilateral condition is used on 
the production end. 

For comparison purposes, we have solved the same problem with a boundary 
condition which is widely used by oil engineers on production boundaries, (but 
violates the PCR), namely, 

which in our notation becomes, for a horizontal sample, 

r(b, t) = 0, Vt. (6-4 

This can be very easily introduced in our code by setting r:+ r = 0, Vn (cf. Fig. 4). 
The results are shown on Fig.s. 32 and 33, where it clearly appears that taking 
account of the PCR on the production boundary (i.e., using the unilateral condition) 
strongly influences the shape of the water production curves, and gives a precise 
determination of the breakthrough time. 

Remark 12. The width of the boundary layer generated by the unilateral 
condition tends to zero when the maximum capillary pressure tends to zero or when 
the injection rate tends to infinity. Hence, the difference between the unilateral 

A 
.76 

unilateral condition 

" 
"a 

(Flow rate proportional to nobilities) 

.24 P 
30.5 cmx 

FIG. 32. Saturation contours after 3920 min with two types of boundary condition on the 
production end. 
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water flow rate 

1 cm3/h 
T 

FIG. 33. Water production rate through x = b with two types of boundary conditions (the water 
injection rate is 2.31 cm3/h). 

condition and condition (61) tends to zero under those conditions. So the unilateral 
condition can be seen as an extension of condition (61) which remains valid for slow 
displacements with capillary pressure. 1 

7. CPU Times 

The runs have been made on a digital PDP11/40. In all the runs on realistic data, 
one has take h = 2 cm. Different CPU times were recorded for various boundary 
conditions. For example, for experiment 1 and Dirichlet boundary condition at x = a 
and x = b, the CPU time for one time step is 2.36 s. For experiment 4 with two 
Neumann boundary conditions, the CPU time for one time step is equal to 3.4 s. 

6. CONCLUSIONS 

An approximation of a one-dimensional quasilinear-d#usion/transport equation 
using finite elements is presented. It reduces to the well-established technique of 
Lesaint’s discontinuous-finite elements (resp. Thomas’s mixed elements) in the 
limiting case of a pure transport equation (resp. a pure diffusion equation). Boundary 
conditions well suited to the simulation of 1-D water flooding are incorporated. The 
gravitational effects, leading to a nonmonotone transport term, are taken into 
account. 

Numerical simulation of 1-D two-phase flows under various conditions (ranging 
from pure diffusion to pure transport cases, including strongly nonmonotone frac- 
tional flow curves and comparisons with exact solutions when available) are 
presented, and shown to give satisfactory results. 

Work is in progress on the solution of the corresponding inverse problem (cf. 
Cohen [ 14, 171) and the extension of the above approximation techniques to the two- 
dimensional case (cf. Jaffre [ 15, 161). 
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APPENDIX: NOTATION 

I 
a = (a, b) 
CJ 
T 
x, t 
@,K 
g 
4x, t) 

the end of a logical unit (Remark, paragraph, etc.) 
spatial domain, with boundary r = (a,!~} 
cross-sectional area of core sample 
duration of experiment 
space and time coordinates 
porosity, absolute permeability of core sample 
gravity acceleration 
reduced water saturation at point x and time t in Sections 1-4, 

0 < u(x, t) < 1; actual saturation in Section 5-numerical results, 
Umin < u(xv t, G umax 

UP value of saturation for which capillary pressure vanishes (typically 
up = 1 if u is the wetting phase saturation) 

given initial water saturation distribution 
trace of u on r= {a, b} 
given Dirichlet data for the saturations on r 
half (oil + water) filtration velocity at time t (independent of x) 
density and viscosity 
relative permeability curve 

I 

of the jth fluid with j = 1 for 

k,(u) = kj,(u)/clj mobility water and j = 2 for oil 

4~) = k,(u) + k,(u) 
P(U) = @,k(u) + @AU))/44 
P,(U) = p, - p, capillarity pressure curve 

k,(v) k,(v) d(v) dv nonlinearity in the diffusion term 

0) = (k,(u) - W)Mu) 
4~) = @, -PJ k,(u) MuMu) 
cos y cosine of the angle of the x axis with the vertical direction oriented 

toward the bottom 
q,=Kgcosy 
S(u, t) = q(t) b(u) + q,c(u) nonlinearity in the transport term 
hk 4 water filtration velocity at point x and time t 

4*(x, t) oil filtration velocity at point x and time t 
trace of 4, on r= {a, b} 

Fk$?h,(b) g’ tven Neumann data for water filtration velocities 0, an r 
a 

T(X, t) = -K - a(u) 
8X 

half (water-oil) filtration velocity caused by capillary diffusion 

sg(t) = + 1 if c > 0, =0 if r = 0, =-1 if r < 0 (sign function), 
Z(a, P) = (min(a, P), max(a, PI) 
I[ a, P] = [ min(a, P), max(a, PI] 
v,=+l for s = b, 

=-1 for s =a, = cosine of the “normal” to 0 with the x axis 
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qa 9 p) = f(a) --J-w 

a--B 
Rankine-Hugoniot speed of propagation of a discontinuity 

jumping from the value a to the value /3 
a = x1 ( x2 ( +. . ( x1+ r = b space discretization 
h=(b-a)/I=xi+, -xi space step for a regular mesh 
0 = t’ < t2 < . . . < tNt ’ = T time discretization 
At=t”+’ - t” time increment, constant 
Yk space of polynomials of degree less or equal to k in the variable x 
V,, c L2(.0) finite-dimensional space for the approximation of u(., t) 

UiE v, approximation (in the L2 sense) of u(., t) in V,, 
ua”, ugn approximation of the traces ~(a, t”), u(b, t”) of u on Z when they exist, 

i.e., when diffusion is present 
u?“,u;” I right- and left-hand values of ui at Xi, i = 1,2,..., Z + 1, with the 

conventions 
Ul -n = u,(a) Dirichlet data for a E 0, 

4 approximation of the trace of u for a zh 0, 
~/,“1 = u,(b) Dirichlet data for a - 0, 

4 approximation of the trace of n for a & 0 
ui”+1/2= 4tCxI +xit1Y2), 

Q,, c @‘“(L?) finite-dimensional space for the approximation of r(., t) 

4 E Q,, approximation of r(., t) 
rl= ri(xi), i = 1, 2 ,,.., Z + 1 
r;+ ,,2 = ri((xi + xi+ ,)/2), i = 1, 2 ,..., Z 
1 1 a set 
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